Motorcycle Repair: Cold start problem/96 Suzuki Intruder 800, suzuki intruder 800, vacuum hoses


Question
When temp gets below about 50 degrees bike won't start. Runs great when warmed up and once I get it started. It will start for about 3 seconds but won't take any gas with choke on or off. When I open up the throttle it quits. It won't idle either.  Then won't start at all. Wait about 5 minutes and it will try to start again with the same results. Went through this for about an hour and it never would start. Later in the day when temp got up around 60 it started right up. Ran it down the road and it ran perfect. Adjusted idle up just a little after I got it started. New plugs in it. Choke problem?

Thanks  

Answer
Hi Fred,

The Intruder's engine should have no problems starting at or around 50 degrees unless you're in a high altitude location.

If the engine was stored or not started for three weeks or longer, fuel in the float bowls may have varnished a bit causing the choke circuit passageways to become obstructed or partially obstructed.

Verify that the choke linkage is moving.

Check for intake air or vacuum air leaks. Also check for weak or defective fuel and vacuum hoses. Weak vacuum hoses may collaspe and cause problems. It's rare, but happens.

You could try one second bursts of starting fluid into the airbox to help starting as necessary.

Avoid adding carburetor cleaners to the fuel to correct the problem. Such products can harm internal carb parts and do not clean thoroughly enough (they don't work).

If you use a fuel stabilizer, follow label instructions carefully. Adding too much may be harmful to parts. Adding too little is not effective.

Cylinder compression, valve clearances, and carb synchronization must be within service limits for the carbs to work properly. Check and adjust accordingly.

Respectfully,
Mark Shively



(Tech Files)


Bad Gas
By Mark Shively

Gasoline goes bad with time and in as little as 3-4 weeks. This effect is known as varnishing. Jets and passageways within carbs become obstructed when varnishing occurs.

Liquid gasoline changes chemically into a gel like substance. Advanced stages of varnishing results with the solid gel changing into a crystal powder substance. Interior carb surfaces are etched in the process and may require carb replacement.

The choke and pilot circuits with most motorcycle carburetors share passageways. When pilot jets become obstructed, the choke circuit compensates and allows engine to start and idle with choke, but stalls without choke.

See carb cleaning information below. See microfiche parts, check parts prices, and order repair manuals here: www.bikebandit.com

~~~~~~~~~~~~~~~~~~~~~~~~~

Carb Cleaning 101
By M. Shively

The elements of internal combustion engines are: correct fuel/air ratio, spark at right time, adequate cylinder compression.

There are many passageways and openings to check and clean. All are important in function and when obstructed or not working properly, have subtle to radical effects on engine performance. Vacuum leaks and carburetor synchronization also have effects on performance and should be inspected and adjusted following the below procedures.

Carb Cleaning 101
Warning: Remove all rubber parts before you begin. These parts usually include vacuum diaphragms, needle valves, o'rings, hoses, and other parts. Spray cleaners will damage these parts. Do not disassemble individual carbs from the carb bracket.

Air & Fuel Passageways: Trace and learn individual fuel and air circuits from beginning to end. Machines can only drill straight through the cast passageways. To change direction, another angled passageway must be drilled. The union is plugged with a brass or bronze bead. Inspect and clean each passageway with spray cleaner, brushes/pipe cleaners/etc, and compressed air. Remove any discoloration and debris. Look for spray cleaner to exit from one or more passageways.

Jet Cleaning: Inspect jets by holding to light and look through them. You should see an unobstructed round hole. Clean the jets with one or more of the following: jet cleaning wires, soak solutions, carb spray cleaners and compressed air. Re-inspect jets after cleaning and install when clear of obstructions. Some main jets have paper-like gaskets. Most have metal spacers between the jet and the emulsion tube. Some screw directly into a brass emulsion tube which is machined for a 7mm wrench at its float chamber exposed base.

Inlet Fuel Valve: Inspect the needle valve & spring. Press down the tiny metal rod that protrudes from the butt or float end of the needle valve. The spring should move freely and return the rod to its location. Check the needle valve's seat area for a groove or other wear. It should appear highly polished. Some needle valve seats are rubber and wear may not be visible. Inspect the needle valve jet seat. You can clean the jet seat with Q-tips and semi-chrome polish if necessary.

Carb Body Castings: Blow air through the atmospheric vent holes located on the dome of each float bowl chamber. Air should exit via hoses or brass nipples. Inspect the emulsion tubes and passageways (cast towers that jets thread into) for discoloration and debris. Clean interior emulsion towers with a soft bristle gun cleaning brush. Clean each Venturi (main carb bore).

Needle Jets & Jet Needles: Clean the needle jets, jet needles, and passageway or tower that needle jet screws into. Clean the emulsion tube (pipe between needle jet and main jet) (Main Jet may screw into emulsion tube). Jet needles are part of the throttle slides. See below…

Throttle Slides: There are several types of throttle slides: Mechanical linkage, vacuum, diaphragm, and cable. Disassembling the jet needle from the slide is not always required for cleaning. If you have vacuum piston type throttle slides (large diameter solid metal slide), avoid cleaning the lubrication from sides and caps. If piston type check cap vents and passageways with air. Clean if necessary and re-lube. If you have rubber vacuum throttle diaphragms, inspect for dry-rot, defects, and tears by gently stretching rubber away from center. Do this until all areas around diaphragm have been inspected. Replace any defective part as described above. Clean carb body areas around diaphragm including air passageways and air jets. Diaphragms have a locator loop or tab fabricated into their sealing edge. Observe this locator upon reassembly. Avoid pinching the diaphragm when reinstalling caps.

Fuel Screws: Fuel screws have sharp tapered ends. Carefully turn one fuel screw in while counting the turns until it seats lightly. Warning: These screws are very easily damaged if over tightened into their seats. Record amount of "turns-in" and remove the fuel screw, spring, washer, and o'ring. The fuel screw is part of the enrichment (choke) circuit...clean passageways as described above. When carbs are assembled, spray low PSI compressed air into diaphragm air vents located at intake side of carbs. Throttle slides should rise, then fall when air is removed. Lightly lube external moving linkages. Reinstall carbs and follow through with carburetor synchronization.

Throttle Cables: Lubricate cables periodically. If cables are disconnected from carbs or removed for replacement, etc . . . remember cable routing and ensure proper reinstallation routing. Avoid bread-tying, sharp bends, and pinching cables. Adjust cables so throttle grip has about 5mm of play or throttle slides or butterfly valves may not open completely (full throttle)(wide full open).

Float Bowls: Inspect float bowls for sediment, gum or varnish, crystallization, and defects. Clean all pipes, tubes, passageways, and embedded jets with cleaners and compressed air. Remove and clean the drain screw and area. Inspect bowl gasket and replace if necessary. Clean and inspect overflow pipes and tubes, look for vertical cracks.

Floats: There are several types of float materials: plastic, brass, black composite, tin, and others. Handle floats carefully. Avoid bending, twisting, denting, or other means of mishandling. Most floats are adjustable by bending a small metal tab near the float axle end. Do not change the float adjuster tab unless tuning fuel service levels. Clean metal floats by soaking or by spraying cleaner and wiping clean. Other material type floats may require replacement if cleaning is necessary. Inspect the needle valve (float valve) and seat. Check needle valve's spring loaded pin. It should depress and return smoothly and without resistance. Check the needle valve's tip for a worn groove. Replace needle valve and seat if either symptom exists. These parts wear together and must be replaced as a set.

Synchronization: This is a fine adjustment performed usually and preferably with the carbs installed and the engine running. The unusual part is performed with gauged wire with the carbs on the work bench. Carburetor synchronizing balances Venturi vacuum at the exhaust side of each carburetor, resulting with smooth idling and optimized performance at all throttle openings. Synchronization is checked using a set of gauges which are either air vacuum type or liquid mercury type. The gauges are connected to vacuum ports on the intake manifolds via nipple tubes or if sealed with screws, sync gauge adapters will be needed. With the engine running at temperature, and with a fan or means of forced convection aimed onto the engine, the carbs fuel screws and idle are adjusted, then the synchronization is adjusted via adjustment screws on the carbs. A reserve fuel tank is recommended for convenience of accessing carbs during this procedure. See gauge instructions and repair manuals for detailed use of synchronization gauges.    

Notes: While carbs are apart, record the jet sizes. Look for a very small number imprinted on the body of the jets. Verify that numbers are the same for all jets on models with in-line cylinders. A few transverse-4 models and V-engines, the inner and outer carbs use some different size jets and it's important to not mix them up. If you have dial or veneer calipers, measure and record float heights. Perform measurements with floats just touching needle valves, though not depressing the needle valve rods. Replace fuel and vacuum hoses. Be sure to use fuel rated hose for fuel. Install or replace in-line fuel filters. It's a good time to remove and clean interior petcock fuel filters. Inspect carb manifolds for dry-rotting, inspect all clamps and air ducts. Inspect, clean, lube, and/or replace air filter(s).   

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

"Engine Doesn't Start, Starting Difficulty"

Starter motor not rotating:

Starter lockout or neutral switch trouble
Starter motor trouble
Battery voltage low
Relays not contacting or operating
Starter button not contacting
Wiring open or shorted
Ignition switch trouble
Engine stop switch trouble
Fuse blown

Starter motor rotating but engine doesn't turn over:

Starter clutch trouble

Engine won't turn over:

Valve seizure
Cylinder, piston seizure
Connecting rod small end seizure
Connecting rod big end seizure
Transmission gear or bearing seizure
Camshaft seizure
Balancer bearing seizure

No fuel flow:

Fuel tap vacuum hose clogged
Fuel tank air vent obstructed
Fuel tap clogged
Fuel line clogged
Float valve clogged

Engine flooded:

Fuel level in carburetor float bowl too high
Float valve worn or stuck open
Starting technique faulty
(When flooded, crank the engine with the throttle fully open to allow more air to reach the engine)

No spark; spark weak:

Battery voltage low
Spark plug dirty, broken, or maladjusted
Spark plug cap or high tension wiring trouble
Spark plug cap not in good contact
Spark plug incorrect
IC ignitor trouble
Neutral, starter lockout, or side stand switch trouble
Pickup coil trouble
Ignition coil trouble
Ignition or engine stop switch shorted
Wiring shorted or open
Fuse blown

Compression low:

Spark plug loose
Cylinder head not sufficiently tightened down
Cylinder, piston worn
Piston ring bad (worn, weak, broken, or sticking)
Piston ring/land clearance excessive
Cylinder head gasket damaged
Cylinder head warped
Valve spring broken or weak
Valve not seating properly (valve bent, worn, or carbon accumulation on the seating surface)
Hydraulic lash adjuster damaged (worn, seizure, or spring broken)
Hydraulic lash adjuster oil passage clogged